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ABSTRACT 
Here we speak about the Applications to partial differential equations by using exterior differential system, we have 

shown that a technique which developed for systematically a prolongation structure a set of interrelated potential 

and pseudo potentials for nonlinear partial differential equations, the generalized KdV equation and Camassa-Holm 

are consider in this work. 
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INTRODUCTION 
An exterior differential system which defines a generalized KdV equation on the transverse manifold was obtained 

[9]. A particular case of this equation has appeared in [10] recently. The symmetries of this equation were 

determined and some solutions were found as well [11]. This permitted the determination of a certain form of 

integrability. Also, a particular type of prolongation over a fiber bundle was found corresponding to this differential 

system, as well as a specific form for a Bäcklund transformation with its associated potential equation. Here, the 

same differential system is studied, but a fully general calculation of the prolongation over the same bundle is 

carried out in detail for this generalized KdV equation. This allows the prolongation structure for any case of the 

given parameters in the equation. For completeness, the general theory for obtaining such prolongations based on 

the given exterior system of differential forms that defines the equation upon sectioning to a transversal integral 

manifold will be outlined first. Transversal integral manifolds give solutions of the equation. Finally, this work is 

extended to a study of a differential system of one-forms which define an equation that includes the Camassa-Holm 

equation which has been of interest because it has been shown to have peaked soliton solutions. The Camassa-Holm 

equation has alot in common with the KdV equation, but there are significant differences as well. The KdV equation 

is globally well-posed when considered on a suitable Sobolevspace, while Camassa-Holm is in general not. The first 

derivative of a solution of the latter can become infinite in finite time. The associated prolongation equations are 

developed and found to be much more restrictive than the previous case. However, it is shown that at least one 

solution to the prolongation system can be found.  

 

PROLONGATION 
Roughly speaking, the prolongations of a differential system are the differential system obtained by adjoining to the 

original differential system its differential consequences. The concept of prolongation tower, which will be defined 

below, gives an abstract formulation of the operation of the prolongation. A general conjecture of  ElieCartan, [2], 

proved by Kuranishi, [3], for a wide class of differential systems, state that an analytic differential system with 

independence condition it's takes a finite number of prolongations for it to be either involutive or incompatible, or 

has no solutions. This result is known as Cartan-Kuranishi Theorem. The proof of Cartan's conjecture has been 

given under a different set of hypotheses in the treatise [1]. Our purpose is to review some of the basic aspects of the 
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prolongation theorem. We assume that all manifolds and the differential systems under consideration are of class 

. 

The prolongation tower of an exterior differential system with independence condition  on an -dimensional 

manifold  is defined as a follows. Let  be an immersion and let  denote the 

map into the Grassmann bundle of -planes in  determined by . The Grassmann bundle  is endowed 

with a canonical exterior differential system  defined the property that  for any immersion 

. Using affine fiber coordinates , on Grassmann 

bundle , the system  is defined as the differential ideal generated by the 1-form 

 

We choose component  of the sub-variety of  defined by the -dimensional admissible integral 

elements of  and assume  to be  manifold. 

THE PROLONGATION STRUCTURES OF GENERALIZED KDV EQUATION 
As the best known equation exhibiting all these phenomena, the KdV equation ( where KdV is Korteweg-de Vries) 

provides an excellent prototype upon which to exercise and illustrate any new development. Accordingly, in this 

work we concerned with obtaining the prolongation structure of the KdV equation and illustrating its relation to the 

many known techniques for treating this equation. Since the analysis is performed in the perhaps unfamiliar 

language of Cartan's exterior differential forms [1].  Let us first give a brief introduction, defining the notation and 

setting up the KdV equation in terms of differential forms. While we do not emphasize the geometrical 

interpretation of our analysis (which is so well expressed by the differential form language), even analytically this 

notation is unquestionably superior for any treatment of conservation laws and integrability conditions. 

These ideas are applied to a class of equation that includes the nonlinear Kortewege-de Vries equation. We write  

 

where,  is a nonzero real constant. A more compact form is obtained if we set  and define a 

new constant , then the (2) takes the form 

 
 

AN EXTERIOR DIFFERENTIAL SYSTEM AND ASSOCIATED DIFFERENTIAL EQUATION 
To begin the investigation, an exterior differential system which is relevant to the partial differential equation must 

be introduced. An exterior differential system is given which is defined over base manifold , which 

supports the differential forms. Consider the system of the 2-forms given by 

 
then, take the differentiating forms in (4), we get 
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Therefore, it can be seen that of all these exterior derivatives vanish modulo . Any regular 2-dimensional 

solution manifold in the 5-dimensional space  

satisfying a specific partial differential equation of the form (4) will annul this set of forms. The system that 

mentioned in (4) is integrable. The exact form of this equation which corresponds to (4) can be found explicitly by 

sectioning the forms into the solution manifold. It follows that 

 
thus, the result that give us the equation (3). 

 

DETERMINING PROLONGATION ALGEBRA 
Based on the forms in system (4), the prolongation method outlined in [1] can be carried out, and the resulting 

system of equations can be solved quite generally. A very general prolongation corresponding to (2) can be 

calculated in terms of an algebra of vector fields which are defined on fibers above the base manifold that supports 

the forms (4). Then, to generate a prolongation algebra, the system (4) is substituted into prolongation condition 

 which lead us to 

 
Comparing the coefficients on the both side of two forms of (7) then, we get 

 

Subscripts indicate partial differentiation with respect to the variable indicated. Translations in  and  constitute 

symmetries of equation (2), and so a simplifying assumption would be to suppose that  are independent 

on . So that, , means it must be that are also invariant under 

translations in these variables. This introduces a considerable simplification into (8) reducing it to 

 
Example (1) 
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The system (9) can be reduced to a single expression which specifies the algebra of brackets of a set of basis vector 

field . The structure of these algebra is dependent on the relative values of  and . 

Proof 
The differential equations in (9) imply the following results 

 

Substituting  and collecting terms in  gives 

 

Since  do not depend on , then, it follows from (11) 

 

As  does not depend on , this can be integrated to give  

 

Substituting (13) into (11) as well as , there results 

 

Since do not depend on , the coefficient of must vanish giving theequation 

 

Then, (15) can be solved for  to give 

 

where the  are vertical vector fields. Consequently, (14) simplifies to 

 

The coefficient of  implies , which using (16) immediately establishes two basic commutators 

of the vector fields , and  

 

The coefficient of  implies the condition 

 

Solving for  and let , we get 

 

By differentiation (16) we get  and substituting to (20) 
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Suppose at this point that do not commute with each other, then a new vector field can be defined as 

 

Sitting  in the Jacobi identity 

 gives 

 
Furthermore, by restitution (18) on (23) we get 

 

Thus,  reduces to the form 

 
Two new commutators have been introduced to write (25) defined as 

 
Using (26) in the Jacobi identity, the following brackets result 

 

Finally, integrating with respect to  yields an expression for  

 

Only one  term in (17) remains to be satisfied, namely . Thus substituting into this bracket 

and using linearity to expand out, we have 

 
Therefore, the vector fields must be interrelated in such a way that the following holds among the coefficients of 

each power of  

 
Example (2)  

There exist nontrivial algebras for the specified by (18), (22), (24), (27) and the coefficients of powers of u in 

(29), which depend on the relative values of  and . 

Proof 

It is required to equate the independent powers of  equal to zero. This has to be done on a case by case basis by 

putting individual restrictions on  and , and not all cases are given. 
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a) Suppose none of the powers of  in (29) are equal, hence . Equating each power of  to 

zero gives the following algebra 

 

At this point,  and  have be required to commute, since  must hold. However, from (26), it follows 

that . Moreover, implies that  and  differ by a constant, hence X2 and X3 

also differ by a constant. Finally,  implies that  and  differ by a constant. Therefore, we can 

put 

 

Substituting these results into  and , they take the form 

 

b) Suppose  and . Then the same algebra as (30) results and  are given by 

(31) with  set equal to one. 

c) Suppose now that , then prolongation equation (29) reduce to 

 
This equation is satisfied provided that the following brackets hold 

 
in addition to the brackets given in (24), (26), and (27). This algebra has a simpler three elementsrealization which 

satisfies all the commutation relations provided that 

 
The nonzero commutation relations are given by 

 
The algebra closes and a finite three-elements algebra results. 

d) Suppose that , then prolongation equation (29) implies the algebra 

 
Recalling that (27) must be satisfied, a three element algebra results if we take 

 
There is a closed algebra in this case with three nontrivial brackets 
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e) The linear case  generates the following bracket relation 

 

f) The case  corresponds to the classical KdV equation and the brackets must satisfy 

 
Since (27) must be satisfied, this system is satisfied if we put 

 
There are three nontrivial commutators which take the form 

 

 
Now, we want toachieve a class of prolongation for the system (9), these condition imply 

. Let us take the following form for the vector fields  

 

Using  and (4.8),  in (43) is sufficient to determine  in the form 

 
Thence, the second equation in (9) takes the form 

 
Simplifying the above formula, it follows 

 

Now, by defining the vector field , then whenever  is independent of , we obtain form (45) 

that 

 

Substituting  in (46) into (45), we get 

 

Furthermore, the last term on (47) must vanish because  does not depend on , then we have two condition on  
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where . By integrating in (48) with respect to  the second equation for  

 

Substituting  from (49) into the first equation with commutator in (48), it can simplify to the following 

 

Some of the brackets in the form (50) will vanish, if that  and   not be equal to one, 

 

To satisfy these brackets, one way in which this can be done is to take  and , from which 

it follows that , where  and  are real constants. Moreover, substituting these results into the 

definition of , it follows that . Using all of these results in (50), it follows that the remaining terms in 

(50) vanish, hence (50) is satisfied identically and we have one solution. To summarize these results for the vector 

field, we have 

 

Since there is only one independent vector field left, we have set  in (4.50) in this case, the prolongation 

structure reduces to the following set of the vector fields 

 

Given the results for  in (52), the connection form  is given by 

 

The connection  can always be chosen on  with coordinates  and , thus 

 
and the solutions of the system (4) determine transversal sections of the fiber bundle such that, substituting 

, these sections are defined by 
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Since (54) implies that , we can eliminate  to obtain an equation for  

 

it follows that , a potential equation in terms of  results 

 
Although the prolongation or the solution of the vector fields (52) is not extremely complicated, in effect a Bäcklund 

transformation has been determined in the form of the equations presented in (54). This set of equations transforms 

the original equation into the form of its potential equation. Given a solution  of (2) then integrating (54) gives a 

corresponding solution  to (55). 

 

PROLONGATION OF A DIFFERENTIAL SYSTEM RELATED TO THE CAMASSA-HOLM 

EQUATION AND THE DEGASPERIS-PROCESI EQUATIONS 
It is the intention here to review some of the mathematical background which will let us study some interrelated 

equations which have been of interest recently. First we will give a brief introduction, defining the notation 

andsetting up the Camassa-Holm equation in terms of differential forms. While we do not emphasize the 

geometrical interpretation of our analysis (which is so well expressed by the differential form language), even 

analytically this notation is unquestionably superior for any treatment of conservation laws and integrability 

conditions. 

 

These ideas are applied to a class of equations that includes the Camassa-Holm and Degasperis-Procesi equations. 

These equations are of the form: 

 

Where, , nonzero. 

 

An exterior differential system which reproduces the given equation on the transverse manifold is developed for 

each case. The derivatives of the forms in this set are shown to be expressible in terms of the same forms, so the 

integrability of each equation is established. Finally, conservation laws for the two equations will be written down 

developed from the original set of one-forms. 

 

Let us begin by introducing the system of exterior differential which is related to several equations which are of 

interest in mathematical physics at the moment. In particular, the Camassa-Holm and Degasperis-Procesi equations 

are to be included in this group. Define the following system of two forms 

 
Then, by differentiating the forms in (57), we get 

 

Therefore, it can be seen that of all these exterior derivatives vanish modulo . Any regular 2-dimensional 

solution manifold in the 5-dimensional space  
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satisfying a specific partial differential equation will annul this set of forms. The exact form can be found explicitly 

by sectioning the forms into the solution manifold. It follows that 

 
thus, the result that give us the equation 

 
this is the specific equation whose integrability is implied by system (57). 

Consider the differential system: 

 
Then, by differentiating the forms in (61), we get 

 

Upon sectioning these forms, and the equation which belong to (61) arises from the section  is given by 

 
The final two cases which will be introduced include equations which are being actively studied at the moment 

Define the following system of two forms, let  be a real, nonzero constant 

 
then, by differentiating the forms in (4.69), we get 

 

Obviously all of the (65) vanish modulo the set of the  in (64). Upon sectioning these forms, and the equation 

obtained from the restriction  

 

from sectioning  and , we have get 

 
The following system leads to an important class ofpartial differential equations which are of much current interest. 

The Camassa-Holm and Degasperis-Procesi equations are to be included in this group. Define the system of forms: 

 
Differentiating (67), we have: 
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All of the details for calculating  have been shown here. Obviouslyall of the vanish modulo the set of . 

from sectioning  and , we have get other cases and the equation results from evaluating the section as follows: 

 
These results imply the partial differential equation: 

 

then, by putting  the equation (70) becomes the Degasperis-Procesi equation 

 

again by putting  the equation (70) becomes the Camassa-Holm equation 

 
 

CONCLUSIONS 
As a conclusion, the generalized KdV equation is considered in this paper. Using the technique prolongation 

structure. We observe that the corresponding to different forms of the original non linear equation. The resulting lie 

algebra is realized and the Backlund transformation obtained from prolongation structure is derived.  
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